$\mathrm{Mo}^{\mathrm{V}}-\mathrm{Mo}^{\mathrm{VI}}$ cationic ordering in the layered molybdate $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$

Nathalie Guillou, ${ }^{a}$ Gérard Férey*a ${ }^{*}$ and M. Stanley Whittingham ${ }^{b}$
${ }^{a}$ Institut Lavoisier, UMR CNRS C0173, Université de Versailles Saint-Quentin-en-Yvelines, 45, Avenue des Etats-Unis, 78035 Versailles cedex, France. E-mail: guillou@chimie.uvsq.fr and Gerard.Ferey@chimie.uvsq.fr
${ }^{b}$ Department of Chemistry and Materials Research Center, State University of New York at Binghamton, Binghamton, New York 13902-6000. E-mail: stanwhit@mail.binghamton.edu

Received 6th June 1998, Accepted 29th July 1998

The mixed valence $\mathrm{Mo}^{\mathrm{v}}-\mathrm{Mo}^{\mathrm{VI}}$ layered tetramolybdate $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$ has been hydrothermally synthesized ($180^{\circ} \mathrm{C}, 3$ weeks, autogenous pressure). It crystallizes in the monoclinic system (space group $C 2$) with $a=$ $11.4090(2), b=11.8227(2), c=10.2305(1) \AA, \beta=117.549(1)^{\circ}$ and $Z=4$ at $20^{\circ} \mathrm{C}$. The structure was solved from single crystal X-ray diffraction data. Full matrix anisotropic least-squares techniques led to a conventional $R_{1}\left(F_{\mathrm{o}}\right)$ factor of $0.044\left[\mathrm{w} R_{2}\left(F_{\mathrm{o}}{ }^{2}\right)=0.107\right]$ for 2885 reflections $[I>2 \sigma(I)]$. Its structure consists of $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]^{2-}$ layers perpendicular to the c^{*} axis, made up of an ordered organization of isolated tetrameric Mo^{v} clusters linked by edges to tetrameric $\mathrm{Mo}^{\mathrm{VI}}$ ones. Ethylenediamine cations are located between the inorganic layers and ensure the connectivity of the structure via hydrogen bonds.

Introduction

Hydrothermal synthesis has been widely used for obtaining zeolitic materials, especially templated metal phosphates. In this way, reduced molybdenum phosphates with octahedral and tetrahedral frameworks have been reported by Haushalter and Mundi. ${ }^{1}$ Molybdates are of much interest, especially in the fields of catalysis and of intercalation chemistry. Furthermore, secondary and ternary molybdates(vi) are also well known for their photochromic properties. ${ }^{2-4}$ More recently, some organic-inorganic compounds constructed from molybdenum(VI) oxide and containing diamine have been reported. ${ }^{5-13}$ The influence of the templating agent as well as the acidity have been demonstrated by the wide range of the structures obtained. On the other hand, Guo et al. ${ }^{14}$ have reported the use of tetramethylammonium ion as a templating agent in the synthesis of molybdates, and in the formation of a new mixed valence $\mathrm{Mo}^{\mathrm{V}}-\mathrm{Mo}^{\text {vI }}$ layered compound, $\left(\mathrm{NMe}_{4}\right) \mathrm{Mo}_{4-\delta} \mathrm{O}_{12}$. However, single crystals of this compound could not be obtained and its structure was solved ab initio from powder diffraction. Owing to the large effects of preferred orientation, location of Mo^{v} and $\mathrm{Mo}^{\mathrm{v1}}$ in the tetramethylammonium molybdate was not possible. Furthermore, the chemical formula, $\left(\mathrm{NMe}_{4}\right) \mathrm{Mo}_{4-\delta} \mathrm{O}_{12}$ ($\delta \approx 0.2$), was not in agreement with their measured oxidation state of 5.5 . During the investigation of the MoO_{3}-ethylenediamine $-\mathrm{H}_{2} \mathrm{O}$ system, single crystals of the mixed $\mathrm{Mo}^{\mathrm{v}}-\mathrm{Mo}^{\mathrm{VI}}$ layered tetramolybdate, $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$, were isolated. Here, we report the synthesis and the crystal structure of this mixed valence molybdate.

Experimental

Synthesis

Crystals of $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$ were obtained hydrothermally from a mixture of 1 g of MoO_{3} (Aldrich, $99.5 \%+$), 0.23 ml of ethylenediamine (Aldrich, $99 \%+$) and 5 ml of $\mathrm{H}_{2} \mathrm{O}$. The reaction was performed ($180^{\circ} \mathrm{C}, 3$ weeks, autogenous pressure) in a sealed hydrothermal bomb fitted with a 23 ml Teflon liner. The liner was filled to 20% of its volume with starting materials before heating. The pH decreased from 10 to 7 during the reaction. The dark brown sheet shaped crystals obtained,
mixed with the already described fibrillar colorless crystals of $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{3} \mathrm{O}_{10}\right],{ }^{6}{ }^{13}$ were then separated from the bulk. TGA measurements, performed under an oxygen flow, showed a weight loss of 9.33% occurring between 275 and $500^{\circ} \mathrm{C}$. This result is in good agreement with the theoretical value for the loss of the ethylenediamine (9.78%). The resulting product is the orthorhombic molybdenum oxide MoO_{3}.

Structure determination

Diffraction data collection was carried out with a Siemens SMART system using a three-circle diffractometer equipped with a CCD bidimensional detector. A total of 5141 intensities were collected at room temperature. The data were corrected for Lorentz and polarization effects and absorption corrections were applied by means of the SADABS program. ${ }^{15}$ The scattering factors and anomalous dispersion corrections were taken from ref. 16. All calculations were performed with the SHELXTL program. ${ }^{17}$ Owing to the similarity between the powder patterns of our compound and that described by Guo et al.,${ }^{14}$ the first attempts to solve the structure were undertaken in the centrosymmetric space group $C 2 / m$ used for $\left(\mathrm{NMe}_{4}\right) \mathrm{Mo}_{4-\delta} \mathrm{O}_{12}{ }^{14}$ The two independent molybdenum coordinates proposed by Guo et al. ${ }^{14}$ were used as the starting model. Fourier calculations were then performed to complete the model but did not give satisfactory results. Attempts to solve the structure were then undertaken in the two noncentrosymmetric space groups $C 2$ and Cm . The structure was solved in the $C 2$ space group (no. 5) while attempts to solve it in the Cm space group failed. The four independent molybdenum atoms were first located using direct methods analysis. Remaining non-hydrogen atoms were found by successive difference Fourier maps. Hydrogen atoms were located using geometrical constraints. The refinement with anisotropic thermal parameters for all atoms except H gives $R_{1}\left(F_{\mathrm{o}}\right)=0.044$ and $w R_{2}\left(F_{\mathrm{o}}{ }^{2}\right)=0.107$ for 2885 reflections $[I>2 \sigma(\mathrm{I})]$ and 184 parameters. Crystallographic data and final atomic parameters with equivalent temperature factors are given in Table 1 and 2, respectively. Bond distances and angles are listed in Table 3.

Full crystallographic details, excluding structure factors, have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Information for Authors, J. Mater.

Table 1 Conditions of data measurements and structure refinement for $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$

Empirical formula	$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{Mo}_{4} \mathrm{~N}_{2} \mathrm{O}_{12}$
Formula weight	637.88
Temperature $/ \mathrm{K}$	$293(2)$
Wavelength $/ \AA$	0.71073
Crystal system	Monoclinic
Space group	$C 2$
Unit cell dimensions	$11.4090(2)$
a / \AA	$11.8227(2)$
b / \AA	$10.2305(1)$
c / \AA	$117.549(1)$
$\beta /{ }^{\circ}$	$1223.48(3), 4$
Volume $/ \AA^{3}, Z$	3.463
$D_{\mathrm{c}} / \mathrm{g}$ cm	
Absorption coefficient $/ \mathrm{mm}^{-1}$	4.073
$F(000)$	1200
Crystal size/mm	$0.180 \times 0.050 \times 0.005$
Theta range for data collection $/{ }^{\circ}$	$3.45-32.50$
Limiting indices	$-17 \leqslant h \leqslant 13,-15 \leqslant k \leqslant 17$,
	$-14 \leqslant l \leqslant 14$
Reflections collected	5141
Independent reflections	$3773\left(R_{\text {int }}=0.0583\right)$
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} F^{2}$
Data/restraints $/$ parameters	$3773 / 1 / 184$
Goodness-of-fit on F^{2}	0.945
Final R indices $[I>2 \sigma(I)]$	$R_{1}=0.0441, w R_{2}=0.1073$
R indices (all data)	$R_{1}=0.0602, w R_{2}=0.1108$
Absolute structure parameter	$0.3(2)$
Extinction coefficient	$0.0017(2)$
Largest diff. peak and hole/e $\AA{ }^{-3}$	1.259 and -2.392

Table 2 Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ${ }^{a}\left(\AA^{2} \times 10^{3}\right)$ for $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$

Atom	x	y	z	$U_{\text {eq }}$
Mo(1)	$9841(1)$	$7884(1)$	$1512(1)$	$8(1)$
Mo(2)	$8158(1)$	$2599(1)$	$1582(1)$	$8(1)$
Mo(3)	$8101(1)$	$5790(1)$	$1505(1)$	$8(1)$
Mo(4)	$9810(1)$	$1086(1)$	$1556(1)$	$8(1)$
O(1)	$7940(8)$	$10964(8)$	$1098(11)$	$8(2)$
O(2)	$9645(8)$	$6058(8)$	$1405(9)$	$12(2)$
O(3)	$9653(6)$	$9345(10)$	$1235(7)$	$14(2)$
O(4)	$6248(8)$	$6037(8)$	$901(11)$	$12(2)$
O(5)	$8005(7)$	$7558(7)$	$974(9)$	$8(2)$
O(6)	$11165(8)$	$7629(9)$	$962(11)$	$11(2)$
O(7)	$9734(8)$	$2732(10)$	$1332(11)$	$15(2)$
O(8)	$8049(6)$	$4292(10)$	$1222(7)$	$14(2)$
O(9)	$8656(9)$	$5906(8)$	$3351(9)$	$19(2)$
O(10)	$10646(9)$	$7804(8)$	$3373(9)$	$19(2)$
O(11)	$8612(8)$	$2635(8)$	$3391(9)$	$18(2)$
O(12)	$10735(8)$	$908(7)$	$3393(9)$	$17(2)$
N(1)	$6708(10)$	$9145(11)$	$1750(10)$	$25(3)$
N(2)	$8256(9)$	$5610(8)$	$5800(10)$	$21(2)$
C(1)	$7581(12)$	$9045(11)$	$3310(13)$	$34(3)$
C(2)	$13020(11)$	$-615(11)$	$5725(10)$	$24(2)$
H(1A)	$7076(39)$	$8812(63)$	$1249(10)$	37
H(1B)	$6571(65)$	$9873(11)$	$1504(19)$	37
H(1C)	$5941(32)$	$8812(61)$	$1535(18)$	37
H(2A)	$8578(74)$	$5797(13)$	$5186(66)$	32
H(2B)	$8834(60)$	$5801(13)$	$6716(23)$	32
H(2C)	$7499(17)$	$5975(8)$	$5544(84)$	32
H(1D)	$8356(12)$	$9509(11)$	$3554(13)$	40
H(1E)	$7873(12)$	$8265(11)$	$3526(13)$	40
H(2D)	$13850(11)$	$-1012(11)$	$6034(10)$	29
H(2E)	$12433(11)$	$-829(11)$	$4715(10)$	29

${ }^{a} U_{\mathrm{eq}}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Chem., 1998, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 1145/113.

Description of the structure and discussion

The structure of ethylenediamine tetramolybdate $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$ is similar to that of $\left(\mathrm{NMe}_{4}\right) \mathrm{Mo}_{4-\delta} \mathrm{O}_{12},{ }^{14}$

Fig. 1 Projection of the structure of $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$ along the b axis; Mo^{v} and $\mathrm{Mo}^{\mathrm{VI}}$ octahedra are represented in dark and light grey, respectively.

Fig. 2 Polyhedral represention of the $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]^{2-}$ layers.
but exhibits $\mathrm{Mo}^{\mathrm{V}}-\mathrm{Mo}^{\mathrm{VI}}$ cationic ordering. It consists of $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]^{2-}$ layers perpendicular to the c^{*} axis (Fig. 1) constructed of distorted $\mathrm{Mo}^{\mathrm{V}} \mathrm{O}_{6}$ and $\mathrm{Mo}^{\mathrm{VI}} \mathrm{O}_{6}$ octahedra. $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]^{2-}$ layers (Fig. 2) are built up from the connection of tetrameric units $\mathrm{Mo}_{4} \mathrm{O}_{16}$ (Fig. 3) built up of two $\mathrm{Mo}^{\mathrm{VI}}$ and two Mo^{V} edge-sharing molybdenum octahedra. These tetrameric units are connected by sharing edges to form infinite double zigzag chains running parallel to the a axis, each tetrameric unit being rotated by 90° with regard to its neighbour. These chains are connected together by sharing MoO_{6} octahedra corners to form the $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]^{2-}$ layers. The structure exhibits channels delimited by eight polyhedra along the [101] direction as shown in Fig. 2. Ethylenediammonium cations are located between the layers and ensure the connectivity of the structure by hydrogen bonds (Fig. 4). One amine group of the diamine points directly toward the centre of the square window whose aperture is $2.6 \AA$.

The formula $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$ deduced from the

Fig. 3 Ball-and-stick (a) and polyhedral (b) representations of the $\mathrm{Mo}_{4} \mathrm{O}_{16}$ unit of the $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]^{2-}$ layers.

Table 3 Principal interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ for $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$

Symmetry transformations used to generate equivalent atoms: I $-x+2, y,-z$; II $x, y-1, z$; III $x-1 / 2, y-1 / 2, z$; IV $-x+3 / 2, y-1 / 2,-z$; $\mathrm{V} x+1 / 2, y-1 / 2, z$; VI $x-1 / 2, y+1 / 2, z$; VII $-x+2, y+1,-z+1$; VIII $-x+2, y-1,-z+1$; IX $x-1 / 2, y+1 / 2, z+1$.

Fig. 4 View of the connection of the $\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]^{2-}$ layers via hydrogen bonds shown by dotted lines.
structure determination indicates an oxidation state of 5.5 for Mo. Bond valence calculations ${ }^{18}$ show that $\operatorname{Mo}(1)$ and $\mathrm{Mo}(3)$ are $\mathrm{Mo}^{\mathrm{vI}}$ while $\mathrm{Mo}(2)$ and $\mathrm{Mo}(4)$ are Mo^{v}. The $\mathrm{Mo}(2)-\mathrm{Mo}(4)$ distance of $2.608(1) \AA$ is characteristic of a metal-metal distance between two $\mathrm{Mo}^{\mathrm{v}} .{ }^{1}$ The two Mo^{V} octahedra have one short, four medium and one long molyb-denum-oxygen bond with values between 1.675(8) and 1.690 (8) $\AA, 1.936$ (8) and $2.079(12) \AA$, and $2.229(10)$ and $2.370(10) \AA$, respectively. There is only one terminal oxygen which corresponds to the short distance. As already observed for the reduced molydenum phosphates, the short $\mathrm{Mo}=\mathrm{O}$ distance and the much longer Mo-O distance are in trans position. ${ }^{1}$ The two $\mathrm{Mo}^{\mathrm{VI}}$ octahedra have two short, two medium, and two long molybdenum-oxygen bonds with values between $1.691(8)$ and $1.791(12) \AA, 1.839(8)$ and $1.943(8) \AA$ and $2.060(8)$ and $2.322(9) \AA$, respectively. The two short distances are in cis position as already observed in numerous structures of amine molybdates, ${ }^{5-13}$ and correspond to the terminal oxygen atom and the oxygen atom which ensures the connectivity of the chains within the layers.

Comparison between (NMe_{4}) $\mathrm{Mo}_{4-\delta} \mathrm{O}_{12}$ and $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$

Both structures have essentially the same inorganic skeleton. However, in the title compound the organic cation carries a charge of +2 , whereas in the NMe_{4} compound the organic cation only carries a charge of +1 . Thus, there must be some additional charge compensation in the NMe_{4} compound. In
the NMe_{4} compound ${ }^{14}$ the formula should correspond to $\left(\mathrm{NMe}_{4}\right) \mathrm{Mo}_{4+\delta} \mathrm{O}_{12}$ with δ around +0.2 , not -0.2 as originally stated. The formula may also be written as $\left(\mathrm{NMe}_{4}\right) \mathrm{Mo}_{4} \mathrm{O}_{12-\Delta}$, suggesting some possible oxygen vacancies. Alternatively, the charge compensation might be due to protons, leading to a formula $\left(\mathrm{NMe}_{4}\right) \mathrm{H}_{x} \mathrm{Mo}_{4} \mathrm{O}_{12}$ where $x \leqslant 1 .{ }^{14}$. These alternatives could not be differentiated by a powder Rietveld study. However, based on the similar structure exhibited by $\left(\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Mo}_{4} \mathrm{O}_{12}\right]$ it seems probable that protons are the charge compensating ions in the NMe_{4} salt. The $\mathrm{Mo}^{\mathrm{v}}-\mathrm{Mo}^{\mathrm{vI}}$ ordering seen in the title compound was not observed in the earlier NMe_{4} compound Rietveld study because of the structural complexity. The unusual cationic order in the title compound leads to a very interesting arrangement of edge sharing tetrameric clusters of $\mathrm{Mo}^{\mathrm{vi}}$ linked by edges to tetrameric clusters of Mo^{V}.

References

1 R. C. Haushalter and L. A. Mundi, Chem. Mater., 1992, 4, 31 and references therein.
2 F. Arnauld-Neu and M. J. Schwing-Weill, Bull. Soc. Chim. Fr., 1973, 12, 3223.
3 F. Arnauld-Neu and M. J. Schwing-Weill, Bull. Soc. Chim. Fr., 1973, 12, 3225.
4 F. Arnauld-Neu and M. J. Schwing-Weill, J. Less-Common Met., 1974, 36, 71.
5 W. Bensch, P. Hug, R. Emmenegger, A. Reller and H. R. Oswald, Mater. Res. Bull., 1987, 22, 447.
6 M. I. Khan, Q. Chen and J. Zubieta, Inorg. Chim. Acta, 1993, 213, 325.
7 Y. Xu, L.-H. An and L.-L. Koh, Chem. Mater., 1996, 8, 814.
8 W. T. A. Harrison, L. L. Dussack and A. J. Jacobson, Acta Crystallogr., Sect. C, 1996, 52, 1075.
9 P. J. Zapf, R. C. Haushalter and J. Zubieta, Chem. Commun., 1997, 182, 321.
10 D. Hagrman, C. Zubieta, D. J. Rose J. Zubieta and R. C. Haushalter, Angew. Chem., Int. Ed. Engl., 1997, 36, 873.

11 P. J. Zapf, R. C. Haushalter and J. Zubieta, Chem. Mater., 1997, 9, 2019.
12 P. J. Zapf, C. J. Warren, R. C. Haushalter and J. Zubieta, Chem. Comтип., 1997, 1543.
13 N. Guillou and G. Férey, J. Solid State Chem., 1997, 132, 224.
14 J. Guo, P. Zavalij and M. S. Whittingham, Chem. Mater., 1994, 6, 357.
15 G. M. Sheldrick, SADABS, unpublished work.
16 International Tables for X-Ray Crystallography, Kluwer Academic, Dordrecht, 1991.
17 G. M. Sheldrick, SHELXTL, Siemens Analytical X-ray Instruments, 1994.
18 N. E. Brese and M. O'Keeffe, Acta Crystallogr., Sect. B, 1991, 47, 192.

Paper 8/04568B

